Artificial Neural Network Predictive Modeling of Uncoated Carbide Tool Wear When Turning Nst 37.2 Steel
نویسندگان
چکیده
We report the development of a predictive model based on artificial neural network (ANN) for the estimation of flank and nose wear of uncoated carbide inserts during orthogonal turning of NST (Nigerian steel) 37.2. Turning experiments were conducted at different cutting conditions on a M300 Harrison lathe using Sandvic Coromant uncoated carbide inserts with ISO designations SNMA 120406 using full factorial design. Cutting speed (v), feed rate (f), depth of cut (d), spindle power (W), and length of cut (l) were the input parameters to both the machining experiments as well as the ANN prediction model while the flank wear (VB) and nose wear (NC) were the output variables. Nine different structures of multi-layer perceptron neural networks with feed-forward and back-propagation learning algorithms were designed using the MATLAB Neural Network Toolbox. An optimal ANN architecture of 5-12-4-2 with the Levenberg-Marquardt training algorithm and a learning rate of 0.1 was obtained using Taguchi method of experimental design. The results of ANN prediction show that the model generalized well with root mean square errors (RMSE) of 3.6% and 4.7% for flank and nose wear, respectively. With the optimized ANN architecture, parametric study was conducted to relate the effect of each turning parameters on the tool wear. The ANN predictive model captures the dynamic behaviour of the tool wear and can be deployed effectively for online monitoring process.
منابع مشابه
Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models
The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...
متن کاملModeling of Tool Wear Parameters in High-Pressure Coolant Assisted Turning of Titanium Alloy Ti-6Al-4V Using Artificial Neural Networks
Titanium alloy (Ti-6Al-4V) can be economically machined with high-pressure coolant (HPC) supply. In this study, an artificial neural network (ANN) model was developed for the analysis and prediction of tool wear parameters when machining Ti-6Al-4V alloy with conventional flow and high-pressure coolant flow, up to 203 bar. Machining trials were conducted at different cutting conditions for both ...
متن کاملModeling of Tool Wear in Turning EN 31 Alloy Steel using Coated Carbide Inserts
The experimental investigations of the tool wear in turning of EN 31 alloy steel at different cutting parameters are reported in this paper. Mathematical model has been developed for flank wear using response surface methodology. This mathematical model correlates independent cutting parameters viz. cutting speed, feed rate and depth of cut with dependent parameters of flank wear. This model is...
متن کاملDevelopment and Application of a Machine Vision System for Measurement of Tool Wear
Tool wear measurement is of great concern in machining industry, as it affects the surface qualities, dimensional accuracy and production costs of the machined components. The orthodox methods of measuring tool wear are time consuming and limited in accuracy and application. In this study, machine vision system based on digital image processing was developed for measurement of tool wear. The ba...
متن کاملPredictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
In machining of parts, surface quality is one of the most specified customer requirements. Major indication of surface quality on machined parts is surface roughness. Finish hard turning using Cubic Boron Nitride (CBN) tools allows manufacturers to simplify their processes and still achieve the desired surface roughness. There are various machining parameters have an effect on the surface rough...
متن کامل